


The Big Picture

H
A public-key encryption scheme secure 

against chosen plaintext attacks

A hash function

Fujisaki-Okamoto

A KEM secure against chosen ciphertext attacks



Fujisaki-Okamoto is known to be secure in the random oracle 
model for H.

The Big Picture

𝑥 𝑦

(Uniform output for every new input)



Fujisaki-Okamoto is known to be secure in the random oracle 
model for H.

What about the quantum random oracle model?

The Big Picture



The Big Picture
This paper shows a tighter
QROM proof of security for 
Fujisaki-Okamoto, under 
some conditions.

In this talk I’ll give a (heavily 
simplified) overview of the 
proof and the main result.





Let X and Y be finite sets.
A quantum random oracle is initiated by choosing a function 
𝑓: 𝑋 → 𝑌 uniformly at random.
It operates as shown below.

A Crash Course

formal linear sums from 𝑋. formal linear sums from 𝑋×𝑌.



If we merely measure the outcome of the oracle immediately, 
then it’s basically just a classical random oracle.
But there are other things we can do (i.e., unitary operations).

A Crash Course
A key point:

There are two basic operations in quantum 
information: unitary operations, and 
measurements.

Unitary operations are always reversible.  
Measurements typically are not.



If we merely measure the outcome of the oracle immediately, 
then it’s basically just a classical random oracle.
But there are other things we can do (i.e., unitary operations).

A Crash Course





We have a PK encryption protocol (KeyGen, Enc, Dec) which is 
IND-CPA secure.

Starting Point

public key

ciphertext

EncKeyGen, Dec



We have a PK encryption protocol (KeyGen, Enc, Dec) which is 
IND-CPA secure.

Starting Point

Enc

𝑚! 𝑜𝑟 𝑚"

(Meaning, Eve cannot distinguish 
between the encryptions of two 
chosen plaintexts.)

ciphertext
public key

ciphertext

KeyGen, Dec



We want an IND-CCA secure KEM (KeyGen’, Encaps, Decaps).
Idea: Use a hash function to strengthen security.

Starting Point

KeyGen’, Decaps Encaps

𝑚! 𝑜𝑟 𝑚"

ciphertext

decryption
oracle



1. Bob generates a uniformly random m, sets c=Enc(m).
2. He sends c and computes k := H(c,m).
3. Alice sets m’=Dec(c), and computes k’ = H(c,m’).

Building the KEM k is “the key”

c



1. Bob generates a uniformly random m, sets c=Enc(m).
2. He sends c and computes k := H(c,m).
3. Alice sets m’=Dec(c), and computes k’ = H(c,m’) and checks 

that c=Enc(m’).
(Why the extra step?)

Building the KEM

c



1. Bob generates a uniformly random m, sets c=Enc(m).
2. He sends c and computes k := H(c,m).
3. Alice sets m’=Dec(c), and computes k’ = H(c,m’) and checks 

that c=Enc(m’).
Problem: Enc might be a random algorithm.  (Can’t redo it.)
Fix: Derandomize it first.  (Downgrades it to “OW-CPA”.)

Building the KEM

c



1. Bob generates a uniformly random m, sets c=Enc(m).
2. He sends c and computes k := H(c,m).
3. Alice sets m’=Dec(c), and computes k’ = H(c,m’) and checks 

that c=Enc(m’).
Problem: What happens when Alice’s step 3 fails?
Fix: Have her generate a fake response pseudorandomly.

Building the KEM

c

“implicit
rejection”



1. Bob generates a uniformly random m, sets c=Enc(m).
2. He sends c and computes k := H(c,m).
3. Alice sets m’=Dec(c), and computes k’ = H(c,m’) and checks 

that c=Enc(m’).
The Fujisaki-Okamoto is basically the above procedure, with 
additional “fixes” added in.

Building the KEM

c



IND-CCA Security Proof
𝑚! 𝑜𝑟 𝑚"

ciphertext
decryption

oracle

A CCA-hack of the KEM we’ve constructed …

⟹

… implies a series of other types of hacks …

⟹

⟹

⟹ …

⟹
ciphertext

… which implies a one-way hack of the original PKE scheme.

decryption



IND-CCA Security Proof
𝑚! 𝑜𝑟 𝑚"

ciphertext
decryption

oracle

⟹ ⟹

⟹

⟹ …

⟹
ciphertext

In the QROM model, this is the step that becomes hard.
(”One-way to hiding lemma.”)

decryption





The Two-Oracles Problem
Let  X, Y be finite sets.

Let 𝐺,𝐻: 𝑋 → 𝑌 be random functions such 
that 𝐺 = 𝐻 everywhere outside of a subset 
𝑆 ⊆ 𝑋.

Problem: Eve wants to distinguish G from H, 
via oracle access.

Let’s also assume that Eve has a “hint” z.
(z = random variable correlated with G,H,S).

G or H

z



The Two-Oracles Problem

Intuition:  This is like an IND experiment.  
Think of z as a public-key encryption of the 
set S. G or H

z



The Two-Oracles Problem
It is not hard to show that if Eve can distinguish G from H efficiently, then 
she can also guess an element of S efficiently.
This is a classical “one-way to hiding lemma,” and it can be used to prove 
classical security for Fujisaki-Okamoto.

𝐴! 𝐴" … 𝐴#G/H G/H
b

decision
bitz



Quantum One-Way to Hiding
Can we prove the same if the unknown oracle is a quantum oracle?
Previous approach: Choose random 𝑖 ∈ 1, … , 𝑑 − 1 . Run distinguisher 
until just before the ith query, and then measure input register.

𝑈" … 𝑈$ b

decision
qubitz

State preparation

f

Unitary

junk

Unitary



Quantum One-Way to Hiding
Can we prove the same if the unknown oracle is a quantum oracle?
Previous approach: Choose random 𝑖 ∈ 1, … , 𝑑 − 1 . Run distinguisher 
until just before the ith query, and then measure input register.
This works, but it’s got a square-root loss in effectiveness.

𝑈"

z

State preparation

f

Unitary



Quantum One-Way to Hiding
New approach [Kuchta ‘20]:
1. Run full algorithm and measure the decision qubit.
2. Rewind back to before ith round and measure the input register.

𝑈" … 𝑈$ b
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Quantum One-Way to Hiding
New approach [Kuchta ‘20]:
1. Run full algorithm and measure the decision qubit.
2. Rewind back to before ith round and measure the input register.
Step 1 magnifies the success probability.  (No square-root loss.)

𝑈"

z

State preparation

f

Unitary





Main Result
Goal: Show the tightest possible upper bound on the probability that a 
CCA-adversary can break a Fujisaki-Okamoto KEM.

(From source paper)

l = target # of security bits
e = probability that adversary can break original scheme
q = total # of hash function uses by adversary
d = sequential # of uses of hash function



Meaning of ”IND-CPA injective”
Let E = (KeyGen, Enc, Dec) be a PKE scheme.

Recall that the 1st step of Fujisaki-Okamoto is to derandomize.  If
𝐸𝑛𝑐!" 𝑚 = 𝐹 ( 𝑝𝑘,𝑚, 𝑐𝑜𝑖𝑛𝑠),

Then let
𝐸𝑛𝑐!"# 𝑚 = 𝐹 𝑝𝑘,𝑚,𝐻 𝑚 .

The scheme E is 𝜼-injective if, with probability ≥ 1 − 𝜂, the map 𝐸𝑛𝑐!"# is 
injective.

Question: How applicable is this to NIST PQC candidate schemes?


