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Big Picture

A hash function
A public-key encryption scheme secure

against chosen plaintext attacks
* Fujisaki-Okamoto

A KEM secure against chosen ciphertext attacks




The Big Picture

Fujisaki-Okamoto is known to be secure in the random oracle
model for H.
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The Big Picture

Fujisaki-Okamoto is known to be secure in the random oracle
model for H.

What about the quantum random oracle model?
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The Big Picture

This paper shows a tighter
QROM proof of security for
Fujisaki-Okamoto, under
some conditions.

In this tal

proof anc

< I'll give a (heavily
simplified) overview of the

the main result.
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Abstract. We introduce a new technique called ‘Measure-Rewind-
Measure’ (MRM) to achieve tighter security proofs in the quantum ran-
dom oracle model (QROM). We first apply our MRM technique to derive
a new security proof for a variant of the ‘double-sided’ quantum One-
Way to Hiding Lemma (O2H) of Bindel et al. [TCC 2019] which, for the
first time, avoids the square-root advantage loss in the security proof. In
particular, it bypasses a previous ‘impossibility result’ of Jiang, Zhang
and Ma [IACR eprint 2019]. We then apply our new O2H Lemma to
give a new tighter security proof for the Fujisaki-Okamoto transform for
constructing a strong (IND-CCA) Key Encapsulation Mechanism (KEM)
from a weak (IND-CPA) public-key encryption scheme satisfying a mild
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The Quantum Random
Oracle Model



A Crash Course

Let X andY be finite sets.

A quantum random oracle is initiated by choosing a function
f:X — Y uniformly at random.

It operates as shown below.
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A key point:

immediately,

There are two basic operations in quantum |
information: unitary operations, and y operations).
measurements.

Unitary operations are always reversible.
Measurements typically are not.




A Crash Course

If we merely measure the outcome of the oracle immediately,
then it's basically just a classical random oracle.
But there are other things we can do (i.e., unitary operations).




The Fujisaki-Okamoto Transform

(“This transform and its variants are used in all public-key encryption schemes and key
establishment algorithms of the second round of the NIST PQC standardization process.”)



Starting Point

We have a PK encryption protocol (KeyGen, Enc, Dec) which is
IND-CPA secure.
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Starting Point

We have a PK encryption protocol (KeyGen, Enc, Dec) which is
IND-CPA secure.

(Meaning, Eve cannot distinguish
between the encryptions of two
chosen plaintexts.)

public key
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‘ ciphertext
KeyGen, Dec




Starting Point

We want an IND-CCA secure KEM (KeyGen’, Encaps, Decaps).
ldea: Use a hash function to strengthen security.
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Building the KEM cis “the key”

1. Bob generates a uniformly W@Enc(m).

2. He sends c and computes k%= H(c,m).
3. Alice sets m’=Dec(c), and computes k' = H(c,m’).




Building the KEM

1. Bob generates a uniformly random m, sets c=Enc(m).

2. He sends c and computes k := H(c,m).

3. Alice sets m’=Dec(c), and computes k' = H(c,m’) and checks
that c=Enc(m’).

(Why the extra step?)




Building the KEM

. Bob generates a uniformly random m, sets c=Enc(m).

. He sends c and computes k := H(c,m).
. Alice sets m’=Dec(c), and computes k' = H(c,m’) and checks

that c=Enc(m’).

Problem: Enc might be a random algorithm. (Can‘tredo it.)
Fix: Derandomize it first. (Downgrades it to "OW-CPA".)




BUi|ding the KEM “implicit

rejection”
1. Bob generates a uniformly random m, sets c=/nc(m).
2. He sends c and computes k := H(c,m).

3. Alice sets m’=Dec(c), and computes k' = H(¢zm') and checks
that c=Enc(m’).

Problem: What happens when Alice’s step fails?
Fix: Have her generate a fake response pseudorandomly.




Building the KEM

1. Bob generates a uniformly random m, sets c=Enc(m).

2. He sends c and computes k := H(c,m).

3. Alice sets m’=Dec(c), and computes k' = H(c,m’) and checks
that c=Enc(m’).

The Fujisaki-Okamoto is basically the above procedure, with
additional “fixes"” added in.




IND-CCA Security Proof

decryption

oracle ciphertext

A CCA-hack of the KEM we've constructed ... ... implies a series of other types of hacks ...

c:phertext
: :
decrypt/on

... which implies a one-way hack of the original PKE scheme.




IND-CCA Security Proof

decryption
oracle

ﬁ c:phertext
decrypt/on

In the QROM model this is the step that becomes hard.
(“One-way to hiding lemma.”)




One-Way to Hiding Lemmas



The Two-Oracles Problem
Let X,Y be finite sets.
Let G,H: X —» Y berandom functions such

that G = H everywhere outside of a subset
S CcX.

Problem: Eve wants to distinguish G from H,
via oracle access.

Let’s also assume that Eve has a “hint” z.
(z = random variable correlated with G,H,S).




The Two-Oracles Problem

Intuition: This is like an IND experiment.
Think of z as a public-key encryption of the
setS.




The Two-Oracles Problem

It is not hard to show that if Eve can distinguish G from H efficiently, then

she can also guess an element of S efficiently.
This is a classical “one-way to hiding lemma,” and it can be used to prove

classical security for Fujisaki-Okamoto.
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Quantum One-Way to Hiding

Can we prove the same if the unknown oracle is a quantum oracle?
Previous approach: Choose randomi € {1, ...,d — 1}. Run distinguisher
until just before the ith query, and then measure input register.
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Quantum One-Way to Hiding

Can we prove the same if the unknown oracle is a quantum oracle?
Previous approach: Choose randomi € {1, ...,d — 1}. Run distinguisher
until just before the ith query, and then measure input register.

This works, but it's got a square-root loss in effectiveness.
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Quantum One-Way to Hiding

New approach [

Kuchta '20]:

1. Run full algorithm and measure the decision qubit.
2. Rewind back to before ith round and measure the input register.
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Quantum One-Way to Hiding

New approach [Kuchta ‘20]:

1. Run full algorithm and measure the decision qubit.

2. Rewind back to before ith round and measure the input register.
Step 1 magnifies the success probability. (No square-root loss.)
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Outcome




Main Result

Goal: Show the tightest possible upper bound on the probability that a
CCA-adversary can break a Fujisaki-Okamoto KEM.

CCA bound|Security loss| Weak scheme

[10] g% e/* | 3X +9loggq IND-CPA
[11,13,15]| d*/? -2 | X+4logd IND-CPA
[5] d'/?.eV2 | X+logd
This work| d?-¢ 4logd (IND-CPA injective

O source paper)

A = target # of security bits

¢ = probability that adversary can break original scheme
q = total # of hash function uses by adversary

d = sequential # of uses of hash function




Meaning of “IND-CPA injective”

Let E = (KeyGen, Enc, Dec) be a PKE scheme.

Recall that the 1% step of Fujisaki-Okamoto is to derandomize. If
Ency,(m) = F (pk, m, coins),
Then let

Encgk (m)=F (pk, m,H(m)).

The scheme E is n-injective if, with probability = 1 — 7, the map Encgk is
Injective.

Question: How applicable is this to NIST PQC candidate schemes?




